
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 23: Distributed systems

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Project 3.

2. Project 4.

3. Distributed systems.

2

Agenda
1. Project 3.

2. Project 4.

3. Distributed systems.

3

Project 3 scores
I forgot we were going to do style grading and mistakenly
posted the raw AG scores to Canvas.

We will again do style grading on Gradescope.

I will update your scores once the style grading is done.

4

Agenda
1. Project 3.

2. Project 4.

3. Distributed systems.

5

Project 4
Use assertions to catch errors early.

Number of free disk blocks should be consistent with the file
system contents.
Ensure you properly unlock locks that you hold.
Verify initial file system is not malformed.

Use showfs to verify that contents of file system match your
expectations.

Write test cases to get file server to crash.

If a request is invalid, it doesn’t matter why, you just reject it.

6

Project 4 Testing
State space coverage

Test every request type with every possible state

For example: FS_CREATE
File vs. directory
In root directory vs. elsewhere
Already exists vs. does not exist
Adding direntry in first data block vs. later

Test close to resource limits
Disk size, max path name, max file name, …

7

Agenda
1. Project 3.

2. Project 4.

3. Distributed systems.

8

Distributed Systems
What’s hard about making a system distributed?
What’s required to enable distributed systems abstractions?

Intro to these topics today and next Monday.

If this piques your interest, take either:
EECS 491 W21 Intro to Distributed Systems
EECS 591 F20 Distributed Systems

9

Recap: RPC
Make distributed system look like local system
Given definitions of server functions, automate:

1. Generation of client-side and server-side stubs
2. Communication between stubs

Example: Client library for project 4

Assumption in Project 4: Single server
Why would we want to have multiple servers?

Think “how to use P4 code to support Dropbox?”

10

Making a distributed system look like a local system

RPC Remote Procedure Call. Make request/response look
like function call/return.

DSM Distributed Shared Memory. Make multiple memories
look like a single memory.

DFS Distributed File System. Make disks on multiple
computers look like a single file system.

Parallelizing compilers Make multiple CPUs look like one CPU.

Process migration (and RPC) Allow users to easily use remote
processors.

11

Example Scenario
Consider user issuing search query to Google.

Google’s objectives in serving query?
Resilience to failures.
Low latency.
Most relevant results.

What is necessary for their distributed system to achieve these
goals?

12

Google in 1997

13

Why Distributed Systems?

14

Conquer geographic separation. Customers may span the planet.

Why Distributed Systems?
Customize computers
for specific tasks.

Example: cache
server, speech-to-text
conversion server.

15

Data Centers

16

Spread services and data
storage/processing across
100s of thousands of
machines.
Build reliable systems with
unreliable components.
Aggregate systems for higher
capacity.

Data Centers

17

They require
enormous amounts
of power and
cooling, so that’s
why they’re often
placed near
hydroelectric or
geothermal plants in
cool climates.

18

https://www.youtube.com/watch?v=4A_A-CmrqpQ

https://www.youtube.com/watch?v=4A_A-CmrqpQ

Why Distributed Systems?
Conquer geographic separation.

Facebook and Google customers span the planet.

Build reliable systems with unreliable components and aggregate
systems for higher capacity.

Objective is more CPU cycles, memory, disks, network bandwidth.
Cost grows non-linearly with increased performance of an
individual system.

Customize computers for specific tasks.
Example: cache server, speech-to-text conversion server.

19

Jeff Dean at Google
Head of AI at Google.

Known for many of Google’s key
distributed systems
technologies, including
MapReduce, Bigtable, Spanner
and TensorFlow.

20

Image source: https://media.wired.com/photos/5df3cd70aa0b880008b6fc35/1:1/w_714,h_714,c_limit/Biz-JeffDean-h_15006736.jpg

https://media.wired.com/photos/5df3cd70aa0b880008b6fc35/1:1/w_714,h_714,c_limit/Biz-JeffDean-h_15006736.jpg

Jeff Dean at Google

21

Image source: https://media.wired.com/photos/5df3cd70aa0b880008b6fc35/1:1/w_714,h_714,c_limit/Biz-JeffDean-h_15006736.jpg

Little-known facts about Jeff Dean

https://media.wired.com/photos/5df3cd70aa0b880008b6fc35/1:1/w_714,h_714,c_limit/Biz-JeffDean-h_15006736.jpg

Challenge 1: Partial failures

“A distributed system is one
where you can’t get your work
done because some machine
you’ve never heard of is
broken.”
– Leslie Lamport, 2013 Turing
Award winner

22

Facebook’s Prineville Data Center
Contents (approx.):

200K+ servers
500K+ disks
10K network switches
300K+ network cables

Typical failure rate for disks is 2% to 4% per year.

At any instant, unrealistic to expect everything will be working.

23

Challenge 2: Ambiguous failures

If a server doesn’t reply, how do you to tell if:
1. The server has failed.
2. The network is down.
3. Neither; they are both just slow.

Solution: Might see if you can reach other sites and if
they can reach that server, e.g., with a proxy server.

Detecting failures can be hard.

24

Challenge 3: Concurrency
Why not partition users across machines?

25

Shared State

Challenge 3: Concurrency
How to ensure consistency of distributed state in the face
of concurrent operations?

Use mutex, cv, semaphore, etc.?

Need to synchronize based on unreliable messages.

26

Distributed Mutual Exclusion

Client Replica 2

Replica 1

Replica 3

Lock service

28

Problems?
Client failures!

Client

Client

Lease: Lock with timeout

Client Replica 2

Replica 1

Replica 3

Lease service

30

Acquire
lease

Lease granted
Valid for next

5 seconds

Scenarios in which
lease server and client
differ about lease validity?

Discrepancy in Lease Validity

Client Replica 2

Replica 1

Replica 3

Lease service

31

Acquire
lease

Lease granted
Valid for next

5 seconds

The message that grants the lease
may have a high delay.
There may be skew between clocks
at lease holder and lease service.

Discrepancy in Lease Validity

Client Replica 2

Replica 1

Replica 3

32

Lease service

Replica must check with the
lease service to confirm lease
validity.

Structuring a concurrent system
One multi-threaded process
on one computer.

33

send

receive

Several multi-
threaded
processes on
several
computers.

Structuring a concurrent system
Might also structure a
concurrent system running on
a single machine as multiple
processes that communicate
with messages.

Why would you do this?

Better security and reliability.
Protect modules from each
other.

34

send

receive

Structuring a concurrent system
Microkernels break the OS
structure into multiple
server processes, each in
its own address space.

35

send

receive

Next time …

Distributed file system

36

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 23: Distributed systems
	Agenda
	Agenda
	Project 3 scores
	Agenda
	Project 4
	Project 4 Testing
	Agenda
	Distributed Systems
	Recap: RPC
	Making a distributed system look like a local system
	Example Scenario
	Google in 1997
	Why Distributed Systems?
	Why Distributed Systems?
	Data Centers
	Data Centers
	Slide Number 18
	Why Distributed Systems?
	Jeff Dean at Google
	Jeff Dean at Google
	Challenge 1: Partial failures
	Facebook’s Prineville Data Center
	Challenge 2: Ambiguous failures
	Challenge 3: Concurrency
	Challenge 3: Concurrency
	Distributed Mutual Exclusion
	Lease: Lock with timeout
	Discrepancy in Lease Validity
	Discrepancy in Lease Validity
	Structuring a concurrent system
	Structuring a concurrent system
	Structuring a concurrent system
	Next time …

